第八章 爱因斯坦的宇宙
随着19世纪渐渐远去,科学家们可以满意地回想,他们已经解开物理学的大部分谜团。
我们略举数例:电学、磁学、气体学、光学、声学、动力学及统计力学,都已经在他们的面前俯首称臣。他们已经发现了X射线、阴极射线、电子和放射现象,发明了计量单位欧姆、瓦特、开尔文、焦耳、安培和小小的尔格。
凡是能被振荡的,能被加速的,能被干扰的,能被蒸馏的,能被化合的,能被称质量的,或能被变成气体的,他们都做到了;在此过程中,他们提出了一大堆普遍定律。这些定律非常重要,非常神气,直到今天我们还往往以大写来书写:“光的电磁场理论”、“里氏互比定律”、“查理气体定律”、“体积结合定律”、“第零定律”、“原子价概念”、“质量作用定律”等等,多得数也数不清。整个世界丁丁当当、喀嚓喀嚓地回响着他们发明创造出来的机器和仪器的声音。许多聪明人认为,科学家们已经没有多少事可干了。
1875年,德国基尔有一位名叫马克斯·普朗克的年轻人犹豫不决,不知道这辈子究竟是该从事数学还是该从事物理学。人们由衷地劝他不要选择物理学,因为物理学的重大问题都已得到解决。他们斩钉截铁地告诉他,下个世纪将是个巩固和提高的世纪,不是个革命的世纪。普朗克不听,他钻研理论物理学,潜心投入了热力学的核心问题──熵的研究工作。(注:具体来说,它是物质系统随意或无序状态的一种量度,达雷尔·埃宾在《普通化学》里用一副扑克牌的有用比喻来加以说明,一副刚从盒子里取出的新扑克牌是按照花色从A到K的顺序来排列的。它可以说是处于有序状态。把牌一洗,扑克牌就处于无序状态。熵就是量度无序程度和确定再次洗牌以后可能产生特定结果的一种方法。)
在一个雄心勃勃的年轻人看来,研究这个问题似乎很有前途。1891年,他做出了成果,却吃惊地发现,关于熵的这项重要工作实际上已经有人做过。他是耶鲁大学一位离群索居的学者,名叫J.威拉德·吉布斯。
吉布斯是个很杰出的人物,但大多数人也许没有听说过。他行为检束,很少抛头露面。
除了去欧洲搞了三年研究以外,他的一辈子差不多都是在一个三个街区的范围之内度过的:一边是他的家,一边是耶鲁大学在康涅狄格州纽黑文的校园。在耶鲁大学的最初十年里,他连工资都懒得去领。(他有另外的收入。)从1871年起,他成为该大学的一名教授,直到1903年去世。在此期间,每学期选他的课的学生平均只有一名。他写的东西晦涩难懂,经常使用自己发明的符号,许多人觉得简直是天书。但是,在那些神秘的公式深处,隐藏着最英明、最深刻的见解。
1875─1878年期间,吉布斯写出了一系列论文,编成了《论多相物质的平衡》的集子。
该书出色地阐述了近乎一切热力学原理──用威廉·H.库珀的话来说,包括“气体、混合物、平面、固体、相移……化学反应、电化电池、沉淀以及渗透”。归根结底,吉布斯想要表明,热力学不仅适用于蒸汽机这样的庞大而又嘈杂的范围里的热量和能量,而且在化学反应的原子层面上也同样存在,而且影响很大。吉布斯的《平衡》一直被称为“热力学原理”,但出于无法猜测的原因,吉布斯情愿将这些具有划时代意义的见解发表在《康涅狄格州艺术与科学院学报》上,那是一份即使在康涅狄格州也毫无名气的杂志。这就是为什么普朗克直到很晚的时候才听说他的名字的原因。
普朗克没有泄气──哎呀,也许稍稍有点胆怯,开始把注意力转向别的问题(注:普朗克一生命运坎坷,他的第一位爱妻1909年去世,死得太早。他有两个儿子,大儿子卡尔死于第一次世界大战,他还有一对孪生女儿,其中之一分娩后死去,另一个也死于生产。1944年,在普朗克85岁那年,盟军的一枚炸弹掉在他的房子上,他失去了一切──文献、日记、一生的积蓄。次年,二儿子因参与暗杀希特勒未遂而被纳粹杀害)。这方面的事,我们等一会儿再说,先稍稍地(而又恰当地)换个方向,前往俄亥俄州的克利夫兰,去一家当时被称为凯斯实用科学学校的机构。19世纪80年代,那里有一位刚到中年的物理学家,名叫阿尔伯特·迈克尔逊。他在他的朋友化学家爱德华·莫雷的协助之下,进行了一系列试验。那些试验得出了很有意思而又令人吃惊的结果,将对以后的许多事情产生重大的影响。
迈克尔逊和莫雷所做的──实际上是在无意之中所做的──破坏了长期以来人们对一种所谓光以太的东西的信念。那是一种稳定、看不见、没有重量、没有摩擦力、不幸又完全是想像出来的媒质。据认为,这种媒质充满宇宙。以太是笛卡儿假设的,牛顿加以接受,之后差不多人人都对它怀有崇敬之情,在19世纪物理学中占有绝对的中心地位,用来解释为什么光能够在空荡荡的太空里传播。它在19世纪初尤其必不可少,因为光和电磁在这时候被看成是波,也就是说某种振动。振动必须在什么东西里面才能发生,因此,就需要一种以太,并长期认为存在一种以太。直到1909年,伟大的英国物理学家J.J.汤姆森仍坚持说:“以太不是哪位爱好思索的哲学家的凭空想像,它对我们来说就像我们呼吸的空气那样不可缺少。”──他说这番话4年多以后,就无可争议地确定以太并不存在。总而言之,人们确实离不开以太。
如果你需要说明19世纪的美国是个机会之乡的理念,那么你很难再找到像阿尔伯特·迈克尔逊这样的例子。他1852年生于德国和波兰边境地区的一个贫苦的犹太商人家庭,小时候随家人来到美国,在加利福尼亚州一个淘金热地区的矿工村里长大。他的父亲在那里做干货生意。家里太穷,他上不起大学,便来到首都华盛顿,在白宫的正门口游来晃去,希望能在尤利塞斯·S.格兰特每天出来散步时碰上这位总统。(那显然是个比较朴实的年代。)在这样散步的过程中,迈克尔逊深深博得了总统的欢心,格兰特竟然答应免费送他去美国海军学院学习。就是在那里,迈克尔逊攻读了物理学。
10年以后,迈克尔逊已经是克利夫兰凯斯学校的一名教授,开始有兴趣测量一种名叫以太漂移的东西──运动物体穿越空间所产生的一种顶头风。牛顿物理学的预言之一是,在观察者看来,光在穿越以太过程中的速度是不一样的,取决于观察者是朝着还是逆着光源的方向移动。但谁也想不出对此进行测量的方法。迈克尔逊突然想到,地球有半年时间是朝着太阳的方向运动,有半年时间是逆着太阳的方向运动的。他认为,只要在相对的季节里进行仔细测量,把两者之间光的运动速度进行比较,就能找到答案。
迈克尔逊说服电话的发明者、刚刚发了财的亚历山大·格雷厄姆·贝尔提供资金,制造了一台迈克尔逊自己设计的巧妙而灵敏的仪器,名叫干涉仪,用来非常精确地测定光的速度。接着,在和蔼而又神秘的莫雷的协助下,迈克尔逊进行了几年的精心测量。这是一件非常细致而又很花力气的活儿,迈克尔逊的精神一下子完全垮了,工作不得不中断了一段时间。
但是,到1887年,他们有了结果。而且,这个结果完全出乎这两位科学家的意料。
加州理工大学天体物理学家基普·S.索恩写道:“结果证明,光的速度在各个方向、各个季节都是一样的。”这是200年来──实际上恰好是200年──出现的第一个迹象,说明牛顿定律也许不是在任何时候、任何地方都适用的。用威廉·H.克罗珀的话来说,迈克尔逊─莫雷结果成为“很可能是物理学史上最负面的结果”。为此,迈克尔逊获得了诺贝尔物理学奖──从而成为获此殊荣的第一位美国人──但要过20年之后。与此同时,迈克尔逊─莫雷实验像一股霉味那样令人不快地浮动在科学家的脑海深处。
令人注目的是,尽管他有了这项发现,当20世纪来到的时候,迈克尔逊觉得自己和别人一样,认为科学工作快要走到尽头──用一位作者在《自然》杂志上的话来说:“只要添上几个角楼和尖顶,在房顶上刻几处浮雕就够了。”
当然,实际上,世界即将进入一个科学的世纪。到时候,谁都会懂得一点,谁都不会什么都懂。科学家快要发现自己在粒子和反粒子的汪洋大海里漂浮,东西瞬间存在,瞬间消失,使毫微秒时间也显得十分缓慢,平平常常,一切都是那么古怪。科学正从宏观物理学向微观物理学转变。前者,物体看得见,摸得着,量得出;后者,事情倏忽发生,快得不可思议,完全超出了想像的范围。我们快要进入一个量子时代,而推动其大门的第一人就是那位迄今为止一直很倒霉的马克斯·普朗克。
1900年,普朗克42岁,已是柏林大学的理论物理学家。他揭示了一种新的“量子理论”
,该理论认为,能量不是一种流水般连续的,而是一包包地传送的东西,他称其为量子。这确实是一种新奇的概念,而且是一种很好的概念。从短期来说,它能为迈克尔逊─莫雷实验之谜提供一种解释,因为它表明光原来不一定是一种波动。从长远来说,它将为整个现代物理学奠定基础。无论如何,它是第一个迹象,表明世界快要发生变化。
但是,划时代意义的事件──一个新时代的黎明──要到1905年才发生。当时,德国的物理学杂志《物理学年鉴》发表了一系列论文,作者是一位年轻的瑞士职员。他没有上过大学,没有用过实验室,通常跑的也只是伯尔尼国家专利局的小小图书馆。他是专利局的三级技术审查员。(他申请提升为二级审查员,但遭到了拒绝。)
他的名字叫阿尔伯特·爱因斯坦。在那个重要的一年,他向《物理学年鉴》递交了五篇论文,用C.P.斯诺的话来说,其中三篇“称得上是物理学史上最伟大的作品”──一篇使用普朗克刚刚提出的量子理论审视光电效应,一篇论述悬浮小粒子的状况(即现在所谓的布朗运动),一篇概述了狭义相对论。
第一篇解释了光的性质(还促使许多事情成为可能,其中包括电视),为作者赢得了一个诺贝尔奖(注:爱因斯坦获奖的原因是“对理论物理学所做出的贡献”,提法比较模糊。他等了16年,直到1921年才获得这个奖──这是个相当长的时间。但与弗雷德里克·莱因斯和德国人恩斯特·鲁斯卡相比,那就算不了什么。前者于1957年发现了中微子,但到1995年,才获得了诺贝尔奖;后者于1932年发明了电子显微镜,等了半个多世纪,直到1986年才获得了诺贝尔奖,由于诺贝尔奖从来不授予死人,因此,若要获得诺贝尔奖,你不仅要善于发明创造,而且要长寿,二者同样重要)。第二篇提供了证据,证明原子确实存在──令人吃惊的是,这个事实过去一直存在一些争议。第三篇完全改变了世界。
爱因斯坦1879年生于德国南部的乌尔姆,但在慕尼黑长大。他的早年生活几乎难以说明他将来会成为大人物。大家都知道,他到三岁才学会说话。19世纪90年代,他父亲的电器生意破产,举家迁往米兰,但这时候已经十来岁的阿尔伯特去了瑞士继续他的学业──虽然他一开始就没有通过大学入学考试。1896年,他放弃了德国籍,以免被征入伍,进入了苏黎世联邦工业大学,攻读旨在培养中学教师的四年制课程。他是一名聪明而又不突出的学生。
1900年,他从学校毕业,没过几个月就开始把论文投给《物理学年鉴》。他的第一篇论文论述(在那么多可写的东西中偏偏论述)吸管里流体的物理学,与普朗克的量子理论发表在同一期上。从1902年到1904年,他写出了一系列关于统计力学的论文,结果发现,多产的J.威拉德·吉布斯1901年在康涅狄格州已经悄悄地发表了同样的作品:《统计力学的基本原理》。
阿尔伯特曾爱上一位同学,一位名叫米勒娃·玛丽奇的匈牙利姑娘。1901年,他们没有结婚就生了个孩子,一个女儿。他们很谨慎,把孩子给了人家。爱因斯坦从没有见过自己的孩子。两年以后,他和玛丽奇结了婚。在此期间,爱因斯坦接受了瑞士专利局的一个职位,在那里待了随后的7年。他很喜欢这份工作:它很有挑战性,能使他的脑子忙个不停,但又不至于转移他对物理学的注意力。就是在这种背景下,他于1905年创立了狭义相对论。
《论动体的电动力学》,无论是在表达方式还是在内容上,都是发表过的最优秀的科学论文之一。它没有脚注,也没有引语,几乎不用数学,没有提及影响过该论文或在该论文之前的任何作品,只是对一个人的帮助致以谢意。他是专利局的一名同事,名叫米歇尔·贝索。C.P.斯诺写道,爱因斯坦好像“全凭思索,独自一人,没有听取别人的意见就得出了结论。在很大程度上,情况就是这样”。
他著名的等式E=mc2在这篇论文中没有出现,但出现在几个月以后的一篇短小的补充里。你可以回忆一下学校里学过的东西,等式中的E代表能量,m代表质量,c2代表光速的平方。
用最简单的话来说,这个等式的意思是:质量和能量是等价的。它们是同一东西的两种形式:能量是获释的质量;质量是等待获释的能量。由于c2(光速的平方)是个大得不得了的数字,这个等式意味着,每个物体里都包含着极其大量──真正极其大量──的能量。(注:c怎么会成为光速的符号,这还是个谜,但戴维·博达尼斯认为,他很可能来自拉丁语celeritas,意思是快。)
你或许觉得自己不大健壮,但是,如果你是个普通个子的成人,你那不起眼的躯体里包含着不少于7×10的18次方焦耳的潜能──爆炸的威力足足抵得上30颗氢弹,要是你知道怎么释放它,而且确实愿意这么做的话。每种物体内部都蕴藏着这样的能量。我们只是不大善于把它释放出来而已。连一颗铀弹──我们迄今为止制造出的能量最大的家伙──释放出的能量还不足它可以释放出的能量的1%,要是我们更聪明点的话。
其中,爱因斯坦的理论解释了放射作用是怎么发生的:一块铀怎么源源不断地释放出强辐射能量,而又不像冰块那样融化。(只要把质量极其有效地转变为能量,这是办得到的:E=mc2。)该理论解释了恒星为什么可以燃烧几十亿年而又不把燃料用尽。(同上。)爱因斯坦用一个简单的公式,一下子使地质学家和天文学家的视界开阔了几十亿年。该理论尤其表明,光速是不变的,最快的,什么速度也超不过它。因此,这使我们一下子弄清了宇宙性质的核心。而且,该理论还解决了光以太的问题,说明它并不存在。爱因斯坦的宇宙不需要以太。
物理学家一般不大重视瑞士专利局职员发表的东西,因此尽管提供的信息又多又有用,爱因斯坦的论文并没有引起多少注意。由于刚刚解开宇宙中几个最难解开的谜团,爱因斯坦申请大学讲师的职位,但是遭到拒绝,接着又申请中学教师的职位,再次遭到拒绝。于是,他重新干起三级审查员的活儿──不过,他当然没有停止思索。他离大功告成还远着呢。
有一次,诗人保罗·瓦莱里问爱因斯坦,他是不是随身带着个笔记本记录自己的思想,爱因斯坦稍稍而又着实吃惊地看了他一眼。“哦,那是没有必要的,”他回答说,“我极少带个笔记本。”我无须指出,要是他真的带个本子的话,倒是很有好处的。爱因斯坦的下一个点子,是一切点子中最伟大的点子──布尔斯、莫茨和韦弗在他们很有创见的原子科学史中说,这确实是最最伟大的点子。“作为一个脑子的独创,”他们写道,“这无疑是人类最高的智力成就。”这个评价当然很高。
1907年,反正有时候书上是这么写的,有个工人从房顶上掉了下来,爱因斯坦就开始考虑引力的问题。天哪,像许多动人的故事一样,这个故事的真实性似乎存在问题。据爱因斯坦自己说,他想到引力问题的时候,当时只是坐在椅子上。
实际上,爱因斯坦想到的更像是开始为引力问题找个答案。他从一开头就清楚地认识到,狭义相对论里缺少一样东西,那就是引力。狭义相对论之所以“狭义”,是因为它研究的完全是在无障碍的状态下运动的东西。但是,要是一个运动中的东西──尤其是光──遇到了比如引力这样的障碍会怎么样?在此后10年的大部分时间里,他一直在思索这个问题,最后于1917年初发表了题为《关于广义相对论的宇宙学思考》的论文。当然,1905年的狭义相对论是一项深刻而又重要的成就。但是,正如C.P.斯诺有一次指出的,要是爱因斯坦没有想到,别人也会想到,很可能在5年之内。这是一件在等着要发生的事。但是,那个广义相对论完全是另一回事。“没有它,”斯诺在1979年写道,“我们今天有可能还在等待那个理论。”
爱因斯坦常手拿烟斗,和蔼可亲,不爱露面,一头乱发,真是个非凡人物。这样的人物不可能永远默默无闻。1919年,战争结束了,世界突然发现了他。几乎同时,他的相对论以普通人无法搞懂出了名。《纽约时报》决定写一篇报道──由于永远令人想不通的原因──派了该报一个名叫亨利·克劳奇的高尔夫运动记者去负责这次采访,结果正如戴维·博丹尼斯在他出色的《E=mc2》一书中指出的,根本不解决问题。
这次采访令克劳奇力不从心,他差不多把什么都搞错了。他的报道里有许多令人难忘的错误,其中之一,他断言,爱因斯坦找了个胆子很大的出版商,敢于出版一本全世界只有12个人看得懂的书。当然,根本不存在这样的书,根本不存在这样的出版商,也根本不存在这么狭小的学术界,但这种看法已深入了人心。过不多久,在人们的想像中,搞得懂相对论的人数又少了许多──应当指出,科学界对这种神话没有去加以澄清。
有一位记者问英国天文学家阿瑟·爱丁顿,他是不是真的就是世界上仅有的三个能理解爱因斯坦的相对论的人之一。爱丁顿认真地想了片刻,然后回答说:“我正在想谁是第三个人呢。”实际上,相对论的问题并不在于它涉及许多微分方程、洛伦兹变换和其他复杂的数学(虽然它确实涉及──有的方面连爱因斯坦也需要别人帮忙),而是在于它不是凭直觉所能完全搞懂的。
实质上,相对论的内容是:空间和时间不是绝对的,而是既相对于观察者,又相对于被观察者;一个人移动得越快,这种效果就越明显。我们永远也无法将自己加速到光的速度;相对于旁观者而言,我们越是努力(因此我们走得越快),我们的模样就越会失真。
几乎同时,从事科学普及的人想要设法使广大群众弄懂这些概念。数学家和哲学家罗素写的《相对论ABC》就是一次比较成功的尝试──至少在商业上可以这么说。罗素在这本书里使用了至今已经多次使用过的比喻。他让读者想像一列90米长的火车在以光速的60%行驶。对于立在站台上望着它驶过的人来说,那列火车看上去会只有70余米长,车上的一切都会同样缩小。要是我们听得见车上的人在说话,他们的声音听上去会含糊不清,十分缓慢,犹如唱片放得太慢,他们的行动看上去也会变得很笨拙。连车上的钟也会似乎只在以平常速度的五分之四走动。
然而──问题就在这里──车上的人并不觉得自己变了形。在他们看来,车上的一切似乎都很正常。倒是立在站台上的我们古怪地变小了,动作变慢了。你看,这一切都和你与移动物体的相对位置有关系。
实际上,你每次移动都会产生这样的效果。乘飞机越过美国,你会用大约一百亿亿分之一秒踏出飞机,比在你后面离开飞机的人要年轻一些。即使从屋子的这头走到那头的时候,你自己所经历的时间和空间也会稍有改变。据计算,一个以每小时160公里的速度抛出去的棒球,在抵达本垒板的过程中会获得0.000 000 000 002克物质。因此,相对论的作用是具体的,可以测定的。问题在于,这种变化太小,我们毫无察觉。但是,对于宇宙中别的东西来说──光、引力、宇宙本身──这些就都是举足轻重的大事了。
因此,如果说相对论的概念好像有点儿怪,那只是因为我们在正常的生活中没有经历这类相互作用。不过,又不得不求助于博尼丹斯,我们大家都经常遇到其他种类的相对论──比如声音。要是你在公园里,有人在演奏难听的音乐,你知道,要是你走得远一点,音乐好像就会轻一点。当然,那并不是因为音乐真的轻了点,而只是因为你对于音乐的位置发生了变化。对于体积很小的或行动缓慢的,因此无法有同样经历的东西来说──比如蜗牛──也许难以置信,一个喇叭似乎同时能对两个听众放出两种音量的音乐。
在“广义相对论”的众多概念中,最具挑战性的,最直觉不到的,在于时间是空间的组成部分这个概念。我们本能地把时间看做是永恒的,绝对的,不可改变的,相信什么也干扰不了它的坚定步伐。事实上,爱因斯坦认为,时间是可以更改的,不断变化的。时间甚至还有形状。一份时间与三份空间结合在一起──用斯蒂芬·霍金的话来说是“无法解脱地交织在一起”──不可思议地形成一份“时空”。
通常,时空是这样解释的:请你想像一样平坦而又柔韧的东西──比如一块地毯或一块伸直的橡皮垫子──上面放个又重又圆的物体,比如铁球。铁球的重量使得下面的底垫稍稍伸展和下陷。这大致类似于太阳这样的庞然大物(铁球)对于时空(底垫)的作用:铁球使底垫伸展、弯曲、翘起。现在,要是你让一个较小的球从底垫上滚过去,它试图做直线运动,就像牛顿运动定律要求的那样。然而,当它接近大球以及底垫下陷部分的时候,它就滚向低处,不可避免地被大球吸了过去。这就是引力──时空弯曲的一种产物。
凡有质量的物体在宇宙的底垫上都能造成一个小小的凹坑。因此,正如丹尼斯·奥弗比说的,宇宙是个“最终的下陷底垫”。从这个观点来看,引力与其说是一种东西,不如说是一种结果──用物理学家米奇奥·卡库的话来说:“不是一种'力',而是时空弯曲的一件副产品。”卡库接着又说:“在某种意义上,引力并不存在;使行星和恒星运动的是空间和时间的变形。”
当然,以下陷的底垫来作比喻,只能帮助我们理解到这种程度,因为没有包含时间的作用。话虽这么说,其实我们的大脑也只能想像到这个地步。若要想像空间和时间以3∶1的比例像线织成一块格子地垫那样织成一份时空,这几乎是不可能的。无论如何,我想我们会一致认为,对于一位凝视着瑞士首都专利局窗外的年轻人来说,这确实是个了不起的见解。
爱因斯坦的广义相对论提出了许多见解。其中,他认为,宇宙心总是或者膨胀或者收缩的。但是,爱因斯坦不是一位宇宙学家,他接受了流行的看法,即宇宙是固定的,永恒的。
多少出于本能,他在自己的等式里加进了他所谓的宇宙常数。他把它作为一种数学暂停键,武断地以此来抵消引力的作用。科学史书总是原谅爱因斯坦的这个失误,但这其实是科学上一件很可怕的事。他把它称之为“我一生中所犯的最大错误”。
说来也巧,大约就在爱因斯坦为自己的理论添上一个常数的时候,在亚利桑那州的洛厄尔天文台,有一位天文学家在记录远方恒星的光谱图上的读数,发现恒星好像在离我们远去。该天文学家有个来自星系的动听名字:维斯托·斯莱弗(他其实是印第安纳州人)。原来,宇宙不是静止的。斯莱弗发现,这些恒星明确显示出一种多普勒频移的迹象──跟赛车场上飞驰而过的汽车发出的那种连贯而又特有的“嚓──嗖”的声音属于同一机制(注:以奥地利物理学家约翰·克里斯琴·多普勒的名字命名,他在1842年首次注意到那种效应,简而言之,情况是这样的:当一个移动物体接近一个静止物体的时候,由于受到接收物 [比如你的耳朵] 的阻碍,它的声波会抬起来,这种抬起在听者的耳朵里是一种尖厉的高音[嚓声]。随着声源过去,声波展开、伸长,使高音突然下降[嗖声])。这种现象也适用于光;就不停远去的星系而言,它被称之为红移(因为离我们远去的光是向光谱的红端移动的,而朝我们射来的光是向蓝端移动的)。
斯莱弗第一个注意到光的这种作用,意识到这对将来理解宇宙的运动十分重要。不幸的是,谁也没有太多注意他。你会记得,珀西瓦尔·洛厄尔在这里潜心研究过火星上的运河,因此洛厄尔天文台是个比较独特的地方。到了20世纪的前10年,它在任何意义上都成了研究天文的前哨阵地。斯莱弗不知道爱因斯坦的相对论,世界也同样不知道斯莱弗,因此,他的发现没有影响。
荣誉反而属于一个非常自负的大人物,他的名字叫埃德温·哈勃。哈勃1889年生于欧扎克高原边缘的一个密苏里州小镇,比爱因斯坦小10岁;他在那里及芝加哥郊区伊利诺伊的惠顿长大。他的父亲是一名成功的保险公司经理,因此家里的生活总是很优裕。埃德温还天生有个好的身体。他是个有实力、有天赋的运动员,魅力十足,时髦潇洒,相貌堂堂──用威廉·H.克罗珀的话来说,“英俊到了不适当的程度”;用另一位崇拜者的话来说,“美得像美神阿多尼斯”。用他自己的话来说,他生活中还经常干一些见义勇为的事──抢救落水的人;领着吓坏了的人穿越法国战场,把他们带到安全的地方;在表演赛中几下子就把世界冠军级的拳击手打倒在地,弄得他们不胜难堪。这一切都好得简直令人难以置信,但都是真的。尽管才华出众,但哈勃也是个顽固不化的说谎大王。
这就很不寻常了,因为哈勃的生活中从小就充满真正的奇特之处,有时候简直令人难以置信地出类拔萃。仅在1906年的一次中学田径运动会上,他就赢得了撑杆跳高、铅球、铁饼、链球、立定跳高、助跑跳高的冠军,还是接力赛跑获胜队的成员──那就是说,他在一次运动会上获得了7个第一名。同年,他创造了伊利诺伊州跳高记录。
作为一名学者,他也是出色得不得了,不费吹灰之力就考上芝加哥大学,攻读物理学和天文学(说来也巧,系主任就是阿尔伯特·迈克尔逊)。他在那里被选为牛津大学的首批罗兹奖学金获得者之一。3年的英国生活显然冲昏了他的头脑。1913年他返回惠顿的时候,披着长披风,衔着烟斗,说起话来怪腔怪调,滔滔不绝──不大像英国人,而又有点像英国人──这种模样他竟保留终生。他后来声称,他在20世纪20年代的大部分时间里一直在肯塔基州当律师,但实际上他在印第安纳州新奥尔巴尼当中学教师和篮球教练,后来才获得博士学位,并在陆军待了很短时间。(他是在签订停战协定前一个星期抵达法国的,几乎肯定没有听到过愤怒的枪炮声。)
1919年,他已经30岁。他迁到加利福尼亚州,在洛杉矶附近的威尔逊山天文台找了个职位。非常出人意料的是,他很快成为20世纪最杰出的天文学家。
让我们稍停片刻,先来考虑一下当时人们对宇宙的了解是如何少得可怜,这是值得的。
今天的天文学家认为,在可见的宇宙里也许有1400亿个星系。这是个巨大的数字,比你听了这话认为的还要巨大得多。假如把一个星系比做一粒冻豆子,这些豆子就可以塞满一个大礼堂──比如,老波士顿花园或皇家艾伯特大厅。(有一位名叫布鲁斯·格雷戈里的天体物理学家还真的计算过。)1919年,当哈勃第一次把脑袋伸向望远镜的时候,我们已知的星系数只有一个:银河系。其他的一切要么被认为是银河系的组成部分,要么被认为是远方天际众多气体中的一团气体。哈勃很快证明这种看法是极其错误的。
在之后的10年里,哈勃着手研究有关宇宙的两个最基本的问题:宇宙已经存在多久?宇宙的范围有多大?为了回答这两个问题,首先必须知道两件事──某类星系离我们有多远,它们在以多快的速度远离我们而去(即现在所谓的退行速度)。红移能使我们知道星系后退的速度,但不能使我们知道它们离得有多远。为此,你需要有所谓的“标准烛光”──即准确测得的某个恒星的亮度,作为测算其他恒星的亮度(并由此计算其相对距离)的基准。
哈勃的好运气来了。此前不久,有一位名叫亨利埃塔·斯旺·莱维特的才女想出了一种找到这类恒星的方法。莱维特在哈佛大学学院天文台担任当时所谓的计算员。计算员终生研究恒星的照片并进行计算──计算员由此得名。计算员不过是个干苦活的代名词。但是,在那个年代,无论在哈佛大学,还是在任何地方,这是妇女离天文学最近的地方。这种制度虽然不大公平,但也有某个意想不到的好处:这意味着半数最聪明的脑子会投入本来不大会有人来动脑子的工作,确保妇女最终能觉察到男同事们往往会疏忽的宇宙之细微结构。
有一位名叫安妮·江普·坎农的哈佛大学计算员利用她熟悉恒星的有利条件,发明了一种恒星分类系统。这种系统如此实用,直到今天还在使用。莱维特的贡献更加意义深远。她注意到,有一种名叫造父变星(以仙王星座命名,第一颗造父变星就是在那里发现的)的恒星在有节奏地搏动──一种星体的“心跳”。造父变星是极少见的,但至少其中之一是我们大多数人所熟悉的。北极星就是一颗造父变星。
我们现在知道,造父变星之所以搏动,是因为──用天文学家的行话来说──它们已经走过“主序阶段”,变成了红巨星。红巨星的化学过程有点儿难懂,已经超出了本书的宗旨(它要求了解很多东西,其中之一就是单离子化的氦原子的性质)。但是,简而言之,在燃烧剩余的燃料的过程中,它们产生了一种很有节奏、不停地一亮一暗的现象。莱维特的天才在于,她发现,通过比较造父变星在天空中不同角度的大小,就可以计算出它们之间的相对位置。它们可以被作为标准烛光──这个名称也是她创造的,现在依然广泛使用。用这种方法得到的只是相对距离,不是绝对距离。但是,即使这样,这也是第一次有人想出了一个计算浩瀚宇宙的实用方法。
(为了合理评价这些深邃的见解,也许值得注意的是,当莱维特和坎农在根据照片上远方星星的模糊影子推定宇宙的基本特性的时候,哈佛大学的天文学家威廉·H.皮克林──他当然能从一流的天文望远镜里想观察多少次就观察多少次──却在建立自己的理论,认为月球上的黑影是由大群大群的、随着季节迁徙的昆虫形成的。)
哈勃把莱维特测量宇宙的标准和维斯托·斯莱弗的红移结合起来,开始以焕然一新的目光有选择地测量空间的点。1923年,他证明,仙女座里一团代号为M31的薄雾状的东西根本不是气云,而是一大堆光华夺目的恒星,其本身就是一个星系,直径有1万光年,离我们至少有90万光年之远。宇宙比任何人想像的还要大──大得多。1924年,哈勃写出了一篇具有划时代意义的论文,题目为《旋涡星云里的造父变星》(“星云”源自拉丁语,意为“云”,哈勃喜欢用这个词来指星系),证明宇宙不仅仅有银河系,还有大量独立的星系──“孤岛宇宙”──其中许多比银河系要大,要远得多。
仅仅这一项发现就足以使哈勃名扬天下,但是,他接着把注意力转向另一个问题,想要计算宇宙到底大了多少,于是有了一个更加令人瞩目的发现。哈勃开始测量远方星系的光谱──斯莱弗已经在亚利桑那州开始做的那项工作。他利用威尔逊山天文台那台新的254厘米天文望远镜,加上一些聪明的推断,到20世纪30年代初已经得出结论:天空中的所有星系(除我们自己的星系以外)都在离我们远去。而且,它们的速率和距离完全成正比:星系距离我们越远,退行速率越快。
这的确是令人吃惊的。宇宙在扩大,速度很快,而且朝着各个方向。你无须有多么丰富的想像力就能从这点往后推测,发现它必定是从哪个中心点出发的。宇宙远不是稳定的,固定的,永恒的,就像大家总是以为的那样,而是有个起点。因此,它或许也有个终点。
正如斯蒂芬·霍金指出的,奇怪的是以前谁也没有想到要解释宇宙。一个静止的宇宙会自行坍缩,这一点牛顿以及之后的每个有头脑的天文学家都应当明白。还有一个问题:要是恒星在一个静止的宇宙里不停燃烧,就会使整个宇宙酷热难当──对于我们这样的生物来说当然是太热了。一个不断膨胀的宇宙一下子把这个问题基本解决了。
哈勃擅长观察,不大擅长动脑子,因此没有充分认识到自己的发现的重大意义。在一定程度上,那是因为他可悲地不知道爱因斯坦的广义相对论。这是很有意思的,因为一方面爱因斯坦和他的理论在这时候已经世界闻名,另一方面,1929年,阿尔伯特·迈克尔逊──这时候已经进入暮年,但仍是世界上最敏锐、最受人尊敬的科学家之一──接受了威尔逊山天文台的一个职位,用他可靠的干涉仪来测量光的速度,至少可以肯定已经向哈勃提到过,爱因斯坦的理论适用于他的发现。
无论如何,哈勃没有抓住机会在理论上有所收获,而是把机会留给了一位名叫乔治·勒梅特的比利时教士学者(他获得过麻省理工学院的博士学位)。勒梅特把实践和理论结合起来,创造了自己的“烟火理论”。该理论认为,宇宙一开始是个几何点,一个“原始的原子”;它突然五彩缤纷地爆发,此后一直向四面八方散开。这种看法极好地预示了现代的大爆炸理论,但要比那种理论早得多。因此,除了在这里三言两语提他一下以外,勒梅特几乎没有取得别的进展。世界还需要几十年时间,还要等彭齐亚斯和威尔逊在新泽西州咝咝作响的天线上无意中发现宇宙背景辐射,大爆炸才会从一种有趣的想法变成一种固定的理论。
无论是哈勃还是爱因斯坦,哪条大新闻里都不会提及多少。然而,尽管当时他们谁也想不到,他们已经作出自己所能作出的贡献。
1936年,哈勃写出了一本广受欢迎的书,名叫《星云王国》。他在这本书里以得意的笔调阐述了自己的重要成就,并终于表明他知道爱因斯坦的理论──反正在某种程度上:在大约200页的篇幅中,他用了4页来谈论这种理论。
1953年,哈勃心脏病发作去世。然而,还有最后一件小小的怪事在等待着他。出于秘而不宣的原因,他的妻子拒绝举行葬礼,而且再也没有说明她怎么处理了他的遗体。半个世纪以后,该世纪最伟大的天文学家的去向仍然无人知道。若要表示纪念,你非得遥望天空,遥望1990年美国发射的、以他的名字命名的哈勃天文望远镜。