第三章 转化

字数:5362

如果你把“学术生活”看作逃避现实的一种方式,那么就不要研究生物学。人类可以通过这门学科来接近生命的奥秘。1

——赫尔曼·穆勒

我们确实不相信……遗传学家居然能在显微镜下看到基因……某些具有自我复制能力的特殊物质不可能构成遗传学的基础。2

——特罗菲姆·李森科(Trofim Lysenko)

遗传学与进化论和解后被称作现代综合论,或者更广义地被称为广义综合论。[1] 3即便遗传学家们已经理解了遗传、进化和自然选择之间的复杂关系,基因的物质本质仍是个未解之谜。基因一直被视为“遗传颗粒”,但是却无法从物理或者化学角度对于“颗粒”携带的信息进行描述。摩尔根将基因视为“细绳上的串珠”,其实连他自己也不清楚这种描述代表的确切物质形式。这些“串珠”由什么构成?而“细绳”的本质又是什么呢?

从某种程度上来说,由于生物学家对基因的化学结构一无所知,因此人们曾经认为基因的物质组成根本无法鉴别。在生物界中,基因通常按照垂直的方式进行遗传,也就是说,从父母到孩子,或者从母细胞到子细胞。然而变异垂直传播使得孟德尔与摩尔根能够通过分析遗传模式来研究基因的作用(例如,亲本果蝇可以将白眼性状传递给子代)。但是研究垂直转化的难题在于,基因从不会离开活的生物体与细胞。当某个细胞分裂时,它的遗传物质会在细胞内解离并且重新分配到子代细胞。在这个过程中,基因始终保持着生物学上的可见性,但是在细胞这个黑箱的遮盖下,我们很难理解基因的化学结构。

遗传物质很难从某个生物体传递到另一个生物体,在此并非指在亲代与子代间进行传递,而是指在两个完全不相关的陌生个体间传递。人们将这种水平基因交换称为转化。其实这个词释放出的信号足以令我们惊讶不已:人类已经习惯通过生殖来传递遗传信息,但是在转化过程中,某种生物体可以变成另外一种生物体,就像化身为月桂树的女神达芙妮(更准确地说,基因改变将使某种生物体的属性转化成另一种生物体的属性;如果从遗传学的角度来理解这个希腊神话,那么树枝生长基因必定通过某种方式进入了达芙妮的基因组,并且具备从人类皮肤下长出树皮、树干、木质部和韧皮部的能力)。

转化现象几乎不会发生在哺乳动物中。但是细菌这种苟活在生物世界边缘的物种却能够进行水平基因交换(为了便于理解这个抽象概念,我们可以假设有两位朋友在夜晚外出散步,他们其中一位是蓝眼睛而另外一位是棕眼睛,可是他们返回后却发现由于基因临时交换而导致眼睛颜色互换)。基因交换的瞬间确实非常奇特美妙。在两个生物体发生转化的瞬间,基因只是作为某种纯粹的化学物质而短暂存在。于是有一位化学家想要通过这个难得的机会来捕捉基因的化学本质。

※※※

转化现象由英国细菌学家弗雷德里克·格里菲斯(Frederick Griffith)发现。4在20世纪20年代早期,格里菲斯作为英国卫生部的医疗官开始研究一种名为肺炎链球菌(Streptococcus pneumoniae)或肺炎球菌(pneumococcus)的细菌。1918年爆发的西班牙流感横扫整个欧洲大陆,在世界范围内导致了2 000万人死亡,而这也是人类历史上最严重的自然灾害之一。肺炎球菌经常会导致患者出现继发性肺炎,由于这种疾病传播迅速且容易致命,因此医生们将其列为“死亡疾病之首”。流感患者并发肺炎球菌性肺炎令传染病疫情雪上加霜,这引起了英国卫生部的高度重视,于是后者征召了许多科研团队来研究这种细菌并开发抗病疫苗。

格里菲斯准备从研究细菌本身来破解这个难题:为什么肺炎球菌对动物来说如此致命?在德国同行的工作基础上,他发现这种细菌可分为两种菌株。其中“光滑型”肺炎球菌的细胞表面包被着光滑的多糖荚膜,并且能够凭借灵巧的身手逃脱免疫系统的攻击。而“粗糙型”肺炎球菌则缺少这种多糖荚膜,它们很容易受到免疫系统的攻击。注射了光滑型肺炎球菌的小鼠很快就死于肺炎,与之相反,接种粗糙型肺炎球菌的小鼠不仅免疫功能得到增强,而且还能够长期存活。

格里菲斯在不经意间完成的实验却成为推动分子生物学发展的革命。首先,他通过高温处理杀死具有毒性的光滑型肺炎球菌,然后将灭活的细菌注射到小鼠体内。结果与他预想的相同,这种细菌的残余物并不能对小鼠发挥作用:由于它们失去了活性,因此不会引起感染。但是当格里菲斯将有毒菌株的死菌与无毒菌株的活菌混合后,接种小鼠却很快死于肺炎。格里菲斯对这些小鼠进行解剖时发现,其体内的粗糙型肺炎球菌已经发生了变化:它们只是与死菌碎片发生了接触,就获得了光滑荚膜这种毒性决定因子。而这种曾经无害的细菌不知何故就“转化”成了有毒的细菌。5

经过高温灭活的细菌碎片相当于微生物体内化学物质组成的温汤,那么它们是如何仅凭接触就将某种遗传性状传递给另外一种活菌的呢?格里菲斯对此百思不得其解。起初,他猜测活菌由于吞噬了死菌才导致荚膜出现改变,这就像在巫术仪式中进行的那样,以为吃掉猛士的心脏就能够拥有勇气或者活力。但是当转化完成之后细菌还可以将这种新获得的荚膜维持数代,而在此期间任何食物来源都应消耗殆尽。

那么最简单的解释就是,遗传信息是以某种化学形式在两种菌株之间进行传递的。在“转化”过程中,控制毒性的基因(也就是能产生光滑荚膜而不是粗糙荚膜的基因)以某种方式脱离了原来的菌株并且进入化学温汤中,然后又从温汤中进入活菌并且整合到其基因组内。换句话说,基因可以不借助任何生殖方式而在两个生物体之间传递。它们是携带信息的自主单位(即物质单位)。如果细胞之间需要进行窃窃私语的话,那么它们不用借助那些优雅的胚芽或芽球来传递信息。遗传信息不仅可以通过某种分子进行传递,同时这种物质还将在细胞外以某种化学形态存在,并且能够在细胞、生物体以及亲代与子代之间传递信息。

只要格里菲斯公布这个惊人的发现,那么整个生物界都将为之欢呼雀跃。在20世纪20年代,科学家们刚刚开始运用化学知识来理解生命的奥秘。生物学逐渐向化学靠拢。生物化学家认为细胞就像是装满化学物质的烧杯,细胞膜将这些混合物紧紧包裹,它们之间发生反应后创造出“生命”现象。格里菲斯证实,生物体之间存在某种可以携带遗传指令的化学物质,而这种“基因分子”足以引起学术界的强烈共鸣,并且将重建创造生命的化学理论。

然而格里菲斯只是位谦虚谨慎且天生腼腆的科学家,“他是个身材矮小的男人……平时几乎听不清他讲话时的声音”6,因此他的发现很难得到广泛认可或者吸引更多关注。乔治·萧伯纳曾说过,“英国人做每件事都很讲原则”,而格里菲斯的处世哲学就是谨言慎行。他在伦敦期间独自一人住在实验室附近的普通公寓里,但是有时也会回到布莱顿(Brighton)那栋白色现代风格的自建乡间别墅。虽然基因可能会在生物体之间移动,但是永远不要想去强迫格里菲斯离开实验室去做讲座。为了骗他去做学术报告,他的朋友曾经把他强行塞进出租车,然后支付了到达目的地的单程车费。

1928年1月,格里菲斯在迟疑了几个月后(“上帝都不着急,为什么我要着急?”),终于在《卫生学杂志》(Journal of Hygiene)上发表了自己的实验数据,而这本名不见经传的学术期刊简直让孟德尔都汗颜。论文以一种深感内疚的语气写成,格里菲斯似乎为撼动遗传学基础表现出了诚挚的歉意。他在文中提到,研究转化现象纯粹是出于对微生物领域的好奇,但是却未明确提及发现了潜在的遗传学化学物质基础这件事。7在20世纪30年代,这篇意义非凡的生物化学论文中最重要的结论就此埋没下去,即便是后人也只能对格里菲斯成果的境遇发出一声叹息。

※※※

尽管弗雷德里克·格里菲斯的实验充分证实了“基因就是一种化学物质”,但是其他科学家对于这种理念依然抱有疑虑。1920年,托马斯·摩尔根曾经的学生赫尔曼·穆勒从纽约搬到得克萨斯,他在这里继续从事果蝇遗传学的研究。8穆勒的实验设计与摩尔根一样,他也希望通过突变体来解释遗传现象。虽然果蝇是遗传学家们的基础研究对象,但是在自然界中产生的突变体实在是凤毛麟角。摩尔根与他的学生们在纽约奋斗了30多年,花了九牛二虎之力才在大量的果蝇种群里发现了白眼与黑体突变。穆勒已经对寻找突变体感到厌烦,他很想知道如果将果蝇暴露在高温、强光或者高能的条件下,那么是否能够加速突变体的产生。

穆勒的想法从理论上看似简单,但是从实操上来说却非常棘手。穆勒起初尝试将果蝇暴露于X射线下,没想到它们全部在研究过程中死亡。他在失望之余降低了射线剂量并且再次进行尝试,结果发现这样可以导致果蝇绝育。穆勒并没有得到什么突变体,他用于实验的大批果蝇不是死亡就是不育。1926年冬季,他突发奇想将某批果蝇用更低剂量的射线照射。穆勒让这些经X射线照射过的雌雄果蝇进行交配,随后他开始观察奶瓶中果蝇幼虫的变化。

然而即便是外行也会被穆勒的实验结果震撼:在这些新生果蝇中出现了各种各样的突变体,其数量从几十只到上百只不等。9当时已经是夜深人静,唯一见证这条爆炸性新闻的人就是独自在楼下工作的一位植物学家。每当穆勒发现一种新型突变体时,他都会向窗外大喊:“我又发现了一种。”摩尔根和他的学生们在纽约花了将近30年的时间才收集到大约50种果蝇突变体,那位植物学家悻悻地写道,穆勒只用了一个晚上就完成了前人半数的工作。

穆勒因其在上述领域中的发现而享誉世界。辐射效果对果蝇突变率的影响表现为以下两点。首先,基因由物质组成。毕竟辐射也只是能量而已。弗雷德里克·格里菲斯已经证实基因可以在生物体之间移动,穆勒则在实验中用能量改变了基因。无论基因到底是什么,它应该具有可以移动与传递的特点,并且将在能量诱导下发生改变,当然这些特性通常都与化学物质有关。

相对于基因的化学组成来说,我们更容易了解整个基因组的延展性变化,同时科学家们对于X射线易如反掌改变基因的能力感到十分惊诧。即便是坚持自然突变理论的达尔文也会认为如此之高的突变率不可思议。在达尔文的理论中,某个生物体发生改变的速率相对固定,当自然选择的速率被放大时能够加速进化,而抑制自然选择的速率可以减缓进化。10穆勒的实验证实了遗传可以被轻而易举地操纵:突变速率本身就瞬息万变。“自然界中没有永恒的现状。”穆勒不久后写道,“一切都处于调整或再调整的过程中,否则生物界最终将会走向灭亡。”11如果将改变突变速率与筛选变异体相结合,穆勒认为他或许能够推动进化周期进入飞速发展的轨道,甚至在实验室里创造出全新的物种和亚种,而自己就是这些果蝇的上帝。

与此同时穆勒也意识到,他的实验对于人类优生学发展具有重大意义。假如使用这种微小剂量的辐射就可以改变果蝇基因,那么距离改变人类基因的时代还会远吗?他写道,假如我们能够“人工诱导”遗传变异,那么遗传学将不再是“命运之神摆布人类”的特权。

与许多同时代的科学家和社会科学家一样,穆勒自20世纪20年代起就被优生学深深吸引。当穆勒还在哥伦比亚大学攻读本科学位时,就曾创建生物学学会来探索和支持“积极优生学”。但到了20年代末期,穆勒见证了优生学在美国走向危险的边缘,因此也不得不重新审视自己的热情所在。当时美国优生学档案办公室主要致力于种族净化,并把清除移民、“异端”与“缺陷”作为工作重点,而这种露骨的邪恶行径也令他备受打击。12那些所谓的优生运动倡导者达文波特、普里迪和贝尔不过是披着伪科学外衣的卑鄙小人。

就在穆勒憧憬着优生学的未来与改变人类基因组可能性的同时,他也在思索高尔顿及其合作者是否在基本概念上犯了错误。与高尔顿和皮尔森相同,穆勒也想要通过遗传学来减轻人类的痛苦。但是与高尔顿的不同之处在于,穆勒开始意识到,只有当社会处于完全平等的状态下时,积极优生学才能真正发挥作用。优生学不可能超越社会平等而实现。社会平等才是开展优生学的先决条件。如果没有社会平等作为保障,那么优生学将不可避免地误入歧途,尽管流浪、贫困、异端、酗酒以及智障等问题只是社会不公的体现,但是它们还是会被当成遗传病来看待。类似卡丽·巴克这样的女性并不是遗传性智障,她们出身贫寒、目不识丁、身患疾病且无力抗争,可还是被扣上遗传缺陷的帽子沦为社会的牺牲品。高尔顿学说认为优生学最终将产生彻底的平等(将弱者转化为强者),然而穆勒却完全否认了这种臆测。他认为,如果不把平等作为前提条件,那么优生学就会沦为强者控制弱者的一种工具。

※※※

当赫尔曼·穆勒在得克萨斯开展的科研工作如日中天之时,他的个人生活却一落千丈。穆勒的婚姻出现了危机并以离婚告终。作为曾经在哥伦比亚大学蝇室共事的合作伙伴,他与斯特提万特和布里奇斯的竞争令彼此势同水火,而他和摩尔根的泛泛之交也演变成冰冷的敌意。

此外穆勒也因为政治倾向而不胜其扰。他在纽约加入了几个社会主义团体,负责报纸编辑和学生招募,同时还跟小说家与社会活动家西奥多·德莱赛(Theodore Dreiser)过从甚密。13在得克萨斯期间,这位遗传领域的学术之星开始秘密编辑一份名为《火花》(The Spark) [模仿列宁创建的《火星报》(Iskra)]的社会主义报纸,对非洲裔美国人公民权、女性投票权、移民受教育权以及工人集体保险等进行了呼吁,虽然按照当时的标准并不算激进,但是这却足以令他的同事与行政当局恼羞成怒。美国联邦调查局针对他的活动展开了调查,报纸则把他称作危险分子、“共产党员”“赤色狂人”“苏维埃支持者”以及怪胎。14

穆勒被孤立后十分苦恼,精神状态逐渐变得更加偏执与抑郁,他在某个清晨悄然离开实验室,就连教室里也找不到他的影子。几个小时之后,由研究生组成的搜索队终于在奥斯汀郊外的树林里找到了穆勒。他茫然地在雨中摸索前行,被淋湿的衣服满是皱褶,脸上溅上了污泥,而且小腿还被意外划伤。穆勒之前服下了大量巴比妥类药物想要自杀,没想到只是在树下睡了一觉就没事了。第二天早上,他又惴惴不安地返回了课堂。

尽管穆勒企图自杀的举动没有成功,但这却是他身体每况愈下的先兆。无论是肮脏的科学与丑陋的政治,还是整个自私的社会,穆勒对于美国已经感到厌倦。他想要逃到某个能让科学与社会主义融合发展的地方去,只有完全平等的社会才能够从根本上对基因进行干预。他知道在德国首都柏林,以自由民主为目标的社会主义正雄心勃勃地卸下历史的包袱,在20世纪30年代的欧洲创建崭新的共和国。马克·吐温曾写道,这里是世界上“最年轻的城市”,来自四面八方的科学家、作家、哲学家与知识分子齐聚一堂,他们在努力缔造自由的未来社会。穆勒认为,如果想要发挥遗传学这门现代科学的全部潜能,那么最合适的地方恐怕非柏林莫属。

1932年冬季,穆勒整理好自己的行李,同时还带上了几百只果蝇、上万个玻璃试管、上千个玻璃瓶、一台显微镜与两辆自行车,此外还有一辆1932年产的福特汽车,而他此行的目的地就是位于柏林的凯泽·威廉研究所(Kaiser Wilhelm Institute)。穆勒做梦都没有想到,尽管这座城市见证了遗传学的蓬勃发展,但是也亲历了人类历史上血雨腥风的一幕。

[1] 休厄尔·赖特(Sewall Wright)、霍尔丹(J. B. S. Haldane)以及其他生物学家也对广义综合论做出了贡献。由于本书内容所限,因此不能将全部贡献者名单逐一列出。


第二章 真相与和解第四章 没有生存价值的生命