第八章 基因的调控、复制与重组

字数:8628

必须要找到这种痛苦背后的根源。1

——雅克·莫诺

正如核心部位少数重要原子的规则排列才是巨大晶体形成的基础,伟大科学体系的诞生也取决于几个关键概念的连锁互动。在牛顿之前,曾有几代物理学家思考过诸如力、加速度、质量以及速度等现象。但是牛顿的贡献在于他严格定义了这些术语的概念,然后将它们通过一系列方程联系起来从而开创了力学研究的新篇章。

根据相同的逻辑,几个关键概念的连锁互动也让遗传学获得了新生。最终,遗传学的“中心法则”就像牛顿力学一样在不断地提炼、改进与修订过程中日臻完善。由于“中心法则”构建了一种独特的思维体系,因此它对于新兴学科的意义非常深远。1909年,约翰森创造了“基因”一词,他曾宣称基因是“独立于任何假说之外”的概念。然而到了20世纪60年代早期,人类在基因领域取得的成果已经远远超出“假说”的范畴。遗传学描述了生物体内部沟通与外部联络的信息流,涉及从转录到翻译的各个阶段。至此,神秘的遗传机制终于浮出水面。

那么这种生物信息流如何才能演化成为复杂的生命系统呢?我们在此以镰刀形红细胞贫血症为例。由于沃尔特·诺埃尔经遗传获得了两个血红蛋白B链基因的异常拷贝,因此他体内的每个细胞都携带有两个异常拷贝(人体内每个细胞都遗传了相同的基因组)。但是诺埃尔体内只有血红细胞受到突变基因的影响,而神经细胞、肾细胞、肝细胞或者肌细胞则相安无事。为什么这种选择性的“攻击”会发生在红细胞中的血红蛋白上呢?为什么在他的眼睛或皮肤里没有血红蛋白呢(事实上,包括眼睛和皮肤细胞在内的所有体细胞中都含有相同的基因组)?正如托马斯·摩尔根指出的那样:“为什么基因中隐形的特征会在(不同)的细胞中以显性的方式表达呢?”2

※※※

大肠杆菌(Escherichia coli)是一种在显微镜下呈胶囊状的肠道细菌,同时它也是结构最简单的生物体之一。1940年,围绕这种细菌开展的实验为回答上述问题提供了第一条重要线索。大肠杆菌可以通过摄取葡萄糖与乳糖这两种不同的糖源而生存下去。无论提供何种糖源供能,大肠杆菌都会进入快速分裂阶段,大约每20分钟细菌数量就可以倍增。同时其生长曲线也表现为指数增长,并按照1、2、4、8、16倍的规律延续下去,整个过程直到培养基浑浊与糖源耗尽才会停止。

这种绵延的生长曲线让法国生物学家雅克·莫诺乐在其中。3莫诺于1937年返回巴黎,而他之前曾在加州理工学院花了一年的时间与托马斯·摩尔根共同研究果蝇。可是此次加州之行并没有什么特别的收获,莫诺在这里的大部分时间都在音乐声中度过,他曾与当地的管弦乐队一起演奏巴赫的曲目,同时还热衷于迪克西(美国南北战争时期南方邦联的非正式国歌)与爵士乐,而彼时战争的阴影正在慢慢包围巴黎这座城市。到了1940年夏季,比利时与波兰已相继被德国军队占领。同年6月,在战争中损失惨重的法国签署了停战协定,允许德国军队占领法国北部和西部的大部分地区。

虽然巴黎在宣布成为“不设防城市”后免于战火毁灭,但是纳粹军队已经长驱直入。孩子们被疏散到乡下,博物馆的藏品被清空,店铺也关闭歇业。1939年,莫里斯·舍瓦利耶(Maurice Chevalier)悲切地唱道:“巴黎永远是巴黎。”然而光明之城不再,街道上缥缈阴森,咖啡馆空无一人。当夜幕降临后,频繁停电经常会让这座城市突然陷入地狱般惨淡的黑暗中。

到了1940年秋季,全部政府建筑上都悬挂着红黑两色的纳粹旗帜,德国士兵沿着香榭丽舍大道用高音喇叭宣布将在夜间实行宵禁,而莫诺当时正在索邦大学闷热幽暗的阁楼里研究大肠杆菌(莫诺于同年秘密加入了法国抵抗组织,不过许多同事并不了解他的政治倾向)。那年冬季,凛冽的寒风将实验室变成了冰窖,他只能耐心地等待正午的阳光来融化冻结的乙酸,与此同时街道上充斥着纳粹分子蛊惑人心的宣传。莫诺对这些重复进行的细菌生长实验进行了某些战略调整。他将葡萄糖与乳糖这两种不同的糖源同时加入培养基中。

如果葡萄糖与乳糖在大肠杆菌中的代谢机制相同,那么这些以混合糖源为营养的细菌也应该表现为同样光滑的生长曲线。然而莫诺却在研究结果中无意间观察到一种怪象。起初大肠杆菌数量与预期的一样呈指数倍增,可是紧接着细菌生长在停滞一段时间后才得以继续。当莫诺研究这种停滞的机理时,他发现了这个超乎寻常的现象。在这种含有混合糖源的培养基中,大肠杆菌细胞首先会选择性地消耗葡萄糖,而不是对等地同时消耗乳糖。大肠杆菌细胞生长停滞似乎就是在重新选择食谱,当培养基中的糖源由葡萄糖变换为乳糖后,这些细菌将再次恢复生长。莫诺将该现象称为“两期生长”(diauxie)。

尽管细菌生长曲线的变化并不明显,但是莫诺却对此感到十分困惑,仿佛是对他严谨科学态度的一种不屑。对于这些以糖源为营养的细菌来说,它们的生长曲线应该表现为平稳流畅的特点。那么为何在改变糖源后会引起生长停滞呢?细菌怎么可能会“知道”或“察觉”糖源发生了改变呢?为什么细菌在消耗糖源过程中会按照先后顺序进行(就像在同一家餐馆吃了两顿饭)?

直到20世纪40年代末期,莫诺才发现这种现象是代谢调节的结果。当细菌消耗的养分从葡萄糖转变为乳糖时,它们会诱导产生特定的乳糖消化酶。然后当葡萄糖再次占据主导地位时,那些乳糖消化酶将会消失,同时葡萄糖消化酶会重新出现。在该转换过程中,诱导消化酶的产生需要几分钟的时间,而这就好像在吃饭期间更换餐具(放下鱼刀,改用甜点叉),于是我们就可以观察到生长停滞。

莫诺认为,两期生长表明基因将通过代谢输入受到调控。如果细胞中的酶(蛋白质)可以在诱导下出现与消失,那么基因就应该起到分子开关的作用(毕竟酶是由基因编码而成)。20世纪50年代早期,弗朗索瓦·雅各布来到巴黎加入了莫诺的团队,他准备通过突变体来系统地研究大肠杆菌中基因调控的机制,而摩尔根曾经采用该方法在果蝇遗传领域取得了辉煌的成就。[1]

这些细菌突变体与果蝇突变体一样在揭示真相时起到了重要的作用。来自美国的微生物遗传学家阿瑟·帕迪(Arthur Pardee)与莫诺、雅各布共同发现了支配基因调控的三项基本原则。

首先,当某个基因启动或关闭时,细胞内的DNA原版拷贝始终保持完整。而真正发挥作用的是RNA:当某个基因启动时,它会在诱导下产生更多的RNA信息,同时生成更多的糖源消化酶。细胞的代谢特性(即它消耗的是乳糖还是葡萄糖)并非来自其恒定的基因序列,而是取决于基因产生的RNA数量。在乳糖代谢过程中,存在大量指导乳糖消化酶合成的RNA。这些信息在葡萄糖代谢过程中被抑制,取而代之的是大量指导葡萄糖消化酶合成的RNA。

其次,RNA信息在产生过程中也会同步受到调控。当糖源由葡萄糖转换为乳糖时,细菌就会启动某个基因模块(其中包含了几种乳糖代谢基因)来消化乳糖。模块中的基因将指定某个“转运蛋白”协助乳糖进入细菌细胞,而另一个基因会编码乳糖分解所需的酶,此外还有一个基因可以合成将上述产物进行再分解的酶。但是令人感到惊讶的是,染色体结构分析结果显示,所有参与某个特定代谢通路的基因均彼此相邻,它们就像是经过分类整理的馆藏图书,可以在细胞中同时被诱导参与代谢过程。这种代谢改变对于细胞的遗传变化具有深远的影响。该过程不仅仅是更换某件餐具那么简单,而是彻底改变了晚餐的全套用具。这种基因调控的模式好似功能电路的启动与关闭,它们仿佛受到某个共用阀芯或是主控开关的操纵。因此莫诺将这类基因模块称为操纵子(operon)。[2]

蛋白质的合成与环境的需求完美同步:只要在细胞生长过程中提供正确的糖源,那么相应的糖代谢基因就会同时启动。冷酷的物种进化再次为基因调控提供了完美的解决方案,而携带遗传信息的基因则通过合成蛋白质来完成各种功能。

※※※

对于细胞中成千上万的基因而言,乳糖感应蛋白是如何做到只对乳糖消化基因进行选择性识别与调控的呢?莫诺与雅各布发现了基因调控的第三项基本原则,他们认为每个基因上都附有特定的DNA调控序列,其作用类似于识别标签。只要糖源感应蛋白在环境中检测到糖,它就会识别这个标签并启动或关闭靶基因。由于这种基因信号能够产生大量RNA信息,因此它们可以指导合成与糖源消化有关的酶。

简而言之,基因携带的信息中不仅包括蛋白质编码的内容,还反映了蛋白质合成的时间与空间特征。生物体中所有的数据均加密存储在DNA中,并且通常会附加到每个基因的前端(当然调控序列也可以位于基因的两端与中间)。而调控序列与蛋白质编码序列组合则决定了基因的功能。

我们在此将回顾性分析一下既往的研究结果。1910年,当摩尔根发现基因连锁现象时,他并未找出染色体上相邻基因之间的逻辑关系:虽然果蝇黑体与白眼基因在染色体上的位置紧密相连,但是它们在功能上似乎没有交集。然而雅各布与莫诺却得出与之相反的结论,他们认为细菌基因串联在一起绝非偶然事件。实际上,参与相同代谢通路调控的基因在物理位置上彼此相邻:它们只有在位于同一基因组的情况下,才能在代谢过程中共同发挥作用。基因上附加的特定DNA序列为其活性(即该基因序列的“功能”)提供了行动指南。这些用于启动或者关闭基因的序列让人联想到句子中的标点与注释(例如引号、逗号以及大写字母等):通过它们可以理解基因语言的背景,并且对其中的重点内容进行诠释,同时读者也将据此掌握阅读与断句的规律:

“这就是基因组的结构。除此之外,它还包含有独立的调控模块。基因组就像是某种奇妙的语言,其中有些词语聚集成句;而另一些则被分号、逗号和破折号分隔开来。”

1959年,就在沃森与克里克关于DNA双螺旋结构的文章问世6年之后,帕迪、雅各布与莫诺发表了他们在乳糖操纵子领域取得的重要成果。这篇论文被称为Pa-Ja-Mo[也有人将其戏称为“睡衣”(pajama)],分别由三位科学家姓氏的前两个字母拼写而成。4由于该研究结果对于生物学具有普遍意义,因此迅速被学术界奉为经典。Pa-Ja-Mo论文指出,基因并不是某种死气沉沉的模板。尽管每个细胞都含有相同的成套基因(基因组相同),但是在选择性激活或者抑制因素的作用下,某些特殊基因亚群依然允许单个细胞对环境做出应答。基因组就像一幅波澜壮阔的蓝图,它可以根据天时地利来调整遗传密码。

在此过程中,蛋白质扮演着调控传感器或者主控开关的角色,它在基因启动、终止或者组合过程中发挥着重要的协调作用。基因组就像是某首娓娓动听的交响乐总谱,它包含着维系生物体成长发育的指南。但在缺少蛋白质的情况下,基因组“乐谱”总是显得有气无力。蛋白质可以让遗传信息以具体的形式展现出来。它们仿佛正在指挥基因组乐团进行演奏,当乐谱进行到第14分钟时,中提琴加入弦乐,而琶音变换中铙钹的撞击的出现将让气氛开始活跃,最后密集的鼓声将整个作品烘托至高潮。或者从概念层面表示为:

Pa-Ja-Mo论文解决了遗传学领域的一个核心问题:具有固定基因组的生物体如何在环境变化时做出如此快速的反应呢?除此之外,它同时也为胚胎发生的核心问题提供了解决方案:这些相同的基因组如何让胚胎演变出成千上万种类型的细胞呢?基因调控(在特定时间里选择性启动或关闭特定细胞中的特定基因)必须根据生物信息的复杂性设置关键分层。

莫诺认为,只有在基因调控的基础上,细胞才得以在时间和空间上实现自己独特的功能。莫诺与雅各布总结道:“基因组不仅包含有一系列生命蓝图(基因),它还是一种协调机制……同时也是一种控制执行的手段。”5沃尔特·诺埃尔体内的红细胞与肝脏细胞含有相同的遗传信息,可是基因调控确保血红蛋白只出现于红细胞中,而不会在肝脏细胞中表达。对于毛虫与蝴蝶来说,虽然它们也携带着完全相同的基因组,但是毛虫可以在基因调控下蜕变成蝴蝶。

胚胎发生可以被想象为基因调控单细胞胚胎逐步成长发育的过程。很久以前,亚里士多德就曾惟妙惟肖地描绘过这种“运动”。而某位中世纪的宇宙学家对于地球构成的回答也被传为历史佳话。

“是海龟。”他答道。

“海龟是由什么构成的呢?”他被问道。

“更多的海龟。”

“这些海龟又是由什么构成的呢?”

“你怎么还不明白,”宇宙学家跺了跺脚,“只有海龟才能决定一切。”

对于遗传学家来说,生物体的发育过程可以用基因序列诱导(或抑制)与基因电路来描述。基因指定的蛋白质可以序贯启动其他基因,整个过程不断循环往复一直可以追溯至最原始的胚胎细胞。自始至终只有基因才能决定这一切。[3]

※※※

基因调控(蛋白质控制基因的启动与终止)的作用在于,它可以让细胞的遗传信息在原有拷贝的基础上变得更加丰富多彩。然而它并不能解释基因自身的复制问题,那么基因在细胞分裂或者精子与卵子形成阶段是如何进行复制的呢?

对于沃森和克里克来说,DNA双螺旋模型(两条互补共存的“阴阳”链)实际上已经暗示了基因复制的机理。1953年,他们发表于《自然》杂志上论文的最后一句指出:“我们注意到了那些尚处在假设阶段的(DNA)特异性配对,它们直接预示了遗传物质的复制机理。”6他们构建的DNA模型不仅是一幅美丽的蓝图,其结构还反映了DNA功能中最重要的特征。沃森和克里克提出,每条DNA链都将生成各自的拷贝,进而从原来的双螺旋结构演变为两条双螺旋链。在DNA复制过程中,原有的两条阴阳链会率先解离。然后它们将被作为模板创建互补的阴阳链,并且最终形成两条相互配对的DNA链。

DNA双螺旋不能自主进行复制,否则它将成为脱缰的野马。在DNA复制过程中,某种名为复制蛋白的酶可能起到了重要作用。1957年,生物化学家阿瑟·科恩伯格开始着手分离DNA复制酶。科恩伯格推断,如果这种酶在自然界中确实存在的话,那么最容易发现它的地方将位于某种快速分裂的生物体内,例如处于迅猛生长阶段的大肠杆菌。

到了1958年,科恩伯格在对大肠杆菌沉淀物进行反复蒸馏后,得到了一种近乎纯净的酶制剂(他曾经告诉我:“遗传学家仰仗统计,生化学家依靠提纯。”)。他将这种物质称为DNA聚合酶7(DNA是由碱基A、C、G与T组成的聚合物,因此这是一种制备聚合物的酶)。当科恩伯格在DNA中加入此类纯化酶,并且提供足够的能量与核苷酸碱基(A、T、G与C)后,他目睹了核酸链在试管中形成的过程:DNA终于实现了自我复制。

科恩伯格于1960年写道,“就在5年前,DNA合成还被视为‘遥不可及’”,人们认为这种神秘的化学反应根本无法在试管中通过增减化学物质来完成。当时流行的理论认为,“篡改(生命)固有的遗传装置只能造成其原有结构发生混乱”。8然而科恩伯格成功合成DNA意味着遗传信息从无序到有序的升华,从而让基因摆脱化学物质亚基的束缚脱颖而出。无懈可击的基因已不再是研究领域的壁垒。

值得注意的是,这里存在某种递归现象:与所有蛋白质一样,启动DNA复制的聚合酶本身就是基因的产物。[4]也就是说每个基因组中都含有允许自身复制的蛋白质密码。由于DNA复制过程错综复杂,因此为其调控提供了关键节点。当然DNA复制也可在其他信号或调节分子的调控下启动或终止,例如年龄或细胞的营养状态,并确保细胞在准备分裂时才进行DNA复制。但是这种机制却引出了另外一个问题:如果调节分子自身发生失控,那么没有任何手段能够阻止细胞持续复制。我们很快就会意识到,癌症这种顽疾就是基因功能障碍的结果。

基因合成的蛋白质可以作用于基因的调控与复制。而重组(recombination)是基因生理学中第三个以“R”作为首字母的单词,它具有产生全新基因组合的能力,因此对于物种生存来说必不可少。

为了理解基因重组的概念,我们可能需要再次重温孟德尔与达尔文的贡献。在长达一个世纪的探索中,遗传学已经阐明了“相似性”在生物体之间传播的规律。编码遗传信息单位的DNA位于染色体上,它们可以通过精子与卵子传递到胚胎,然后再从胚胎进入生物体的每个细胞。这些遗传单位编码合成蛋白质的信息,而它们与蛋白质反过来又决定了生物体的形态和功能。

但是当这种遗传机制解决了孟德尔的问题(如何保持不变)后,它却未能进一步诠释达尔文的逆向谜题(如何推陈出新)。如果生物体要发生进化,那么它必须要能产生遗传变异,也就是说子代与亲代的遗传物质并不相同。如果通常情况下基因只传递相似性,那么它们是如何传播“差异性”的呢?

在自然界中,突变只是生物体产生变异的一种机制,例如DNA序列(碱基由A变为碱基T)改变可能导致蛋白质的结构与功能受到影响。而突变常见的原因包括:DNA被化学物质或X射线破坏,以及DNA复制酶在复制基因时偶然产生错误。

但是除了突变以外,自然界还存在另一种遗传多样性的发生机制,那就是遗传信息可以在染色体之间发生交换。源自母本与父本的染色体DNA可以交换位置,随后可能产生父本与母本基因的杂合体。而重组也是一种遗传物质“突变”的形式,只不过是整段遗传物质在染色体间发生了交换。[5]

遗传信息在染色体之间发生移动只见于极特殊的情况下。第一种情况发生在精子与卵子形成的过程中。在精子与卵子发生之前,细胞临时起到基因护栏的作用。由于来自母本与父本的染色体按照配对原则相互拥抱在一起,因此它们相互之间很容易发生遗传信息互换。配对染色体间遗传信息的互换对于混合与匹配亲本遗传信息至关重要。摩尔根将该现象称为“交叉互换”(他的学生们曾经使用交叉互换对果蝇基因进行定位)。然而更符合现代学科发展的称谓是“重组”,这个术语可以反映基因组合进行再次组合的能力。

相比前者,第二种情况的意义更为重大。如果DNA被诱变剂(如X射线)损伤,那么遗传信息显然会受到威胁。在这种遗传损伤发生后,细胞可以根据基因配对染色体上的“孪生”拷贝对其进行重新复制,其中母本拷贝中的部分信息可能被父本拷贝改写,并且将再次导致杂合基因的产生。

在上述基因重建的过程中,碱基配对原则再次发挥了重要作用。同时基因在阴阳互补的作用下恢复了原始状态:DNA就像奥斯卡·王尔德小说中的人物道林·格雷(Dorian Gray)那样,他可以源源不断地从自身画像中汲取新的活力。与此同时,蛋白质则对于整个过程进行监管与协调(引导受损DNA链向完整基因靠拢,复制与纠正缺失的遗传信息,并且缝合基因断裂位点),并且最终用正常基因上的信息修复受损的DNA链。

※※※

值得注意的是,调控、复制与重组这三个基因生理学概念与DNA的分子结构密不可分,而沃森与克里克提出的双螺旋结构中碱基配对原则发挥着关键作用。

在基因调控过程中,DNA向RNA转录需要依赖碱基配对才能完成。当某条DNA链被用于构建RNA信息时,它们将会根据碱基配对原则生成基因的RNA拷贝。而在复制过程中,DNA将再次根据其序列为模板进行拷贝。每条DNA链都会生成与自身互补的拷贝,双螺旋结构就此可以形成两条双螺旋链。此外在DNA重组过程中,还是碱基配对原则让受损的DNA得以恢复。这些受损的基因拷贝将以互补链或者第二份基因拷贝为模板进行重建。[6]

双螺旋结构充分展示了碱基配对原则的重要性,成功解决了遗传生理学中的三大难题。这些互为镜像的化学物质使得基因可以根据正常拷贝进行重建。而碱基配对原则就是确保遗传信息准确性与稳定性的基础。“莫奈不过是有一双善于发现的眼睛,”塞尚(Cézanne)曾这样称赞他的朋友,“可是上帝啊!这双慧眼实在令人钦佩不已!”如果按照这个逻辑,那么DNA也不过是一种化学物质,可是上帝啊,这种化学物质简直就是旷世奇迹!

※※※

在生物学领域中,解剖学家和生理学家不仅分属于两大阵营,同时他们的研究方法也大相径庭。解剖学家通过描述物质、结构与身体部位的属性来反映生物体的形态变化。与之相反,生理学家通过观察这些结构与部位交互作用产生的功能来了解其运行规律。

这种学科之间的差异让基因历史发生了根本性转变。或许孟德尔是最早的基因“解剖学家”:根据豌豆代际信息传递的特点,他将基因的基本结构描述为不可分割的信息微粒。20世纪20年代,摩尔根与斯特提万特将该解剖链的意义延伸,证明基因是染色体上呈线性排列的物质单位。到了20世纪40年代至50年代,埃弗里、沃森与克里克证实了DNA就是基因分子,并且用双螺旋结构来描述其空间构象。从此将基因的解剖概念推向巅峰。

然而在20世纪50年代末期至70年代之间,基因生理学却异军突起成为该领域的主力军。调控(例如,基因会在特定条件下被“启动”或“关闭”)可以让基因在时空交错中风云变幻,从而加深了人们对不同细胞之间千差万别的理解。此外,基因还能够在染色体之间进行复制与重组,并且由特定的蛋白质进行修复,而这也解释了细胞与生物体如何代际保存、复制与重组遗传信息的问题。

对于人类生物学家来说,上述每项发现都意义深远。随着遗传学从基因概念的物质层面转向机制层面,也就是从研究基因的组成发展为探索基因的功能时,人类生物学家逐渐察觉到,他们终于通过这条主线将基因、生理学以及病理学紧密联系起来。疾病发生未必与遗传密码改变有关(例如镰刀形红细胞贫血症中的血红蛋白),这种情况也可能是基因调控的结果,从而导致正确的基因无法在适当的时间与空间内被启动或关闭。基因复制不仅需要解释单细胞演化为多细胞生物体的原理,同时还要阐明基因复制错误对于疾病的影响,例如那些没有自发性代谢疾病或严重精神疾病家族史患者的发病机制。基因组之间的共性可以解释亲代与子代的相似性,而基因突变与基因重组则能解释它们之间的差异性。对于家庭成员来说,他们不仅共享相似的社交文化网络,而且还拥有功能相仿的活性基因。

众所周知,19世纪的人体解剖学和生理学为20世纪的医学奠定了基础,同时基因解剖学与生理学也为这门重要的新兴生物学科开辟了一片天地。在接下来的几十年里,这种具有革命性意义的学科研究对象将从简单生物体扩展到更为复杂的领域。其中那些概念性的词语(调控、重组、突变、修复)将从晦涩的基础科学期刊融入普通医学教科书,并且会在渗透过程中引发社会与文化领域的广泛争议(接下来本书会提到“种族”的概念,然而如果没有首先理解基因重组与突变的机制,那么我们不可能理解其深刻内涵)。这门新兴学科将诠释基因在构建、维护、修复与繁殖中的作用,同时它还将揭秘基因解剖与生理变异和人类身份、命运、健康与疾病的关系。

[1] 莫诺与雅各布早已相互仰慕,他们两人还都是微生物遗传学家安德烈·利沃夫(André Lwoff)的好友。当时雅各布在阁楼的另一侧工作,他正在研究一种可以感染大肠杆菌的病毒。虽然他们的研究方向表面上各不相同,但是实际上都围绕基因调控进行。莫诺与雅各布在比较了彼此的实验记录后发现,他们只是从不同的角度在研究相同的问题,而这也促成了两人于20世纪50年代的合作。

[2] 1957年,帕迪、莫诺与雅各布发现乳糖操纵子由一个单独的主控开关控制,这种蛋白质开关最终被命名为阻遏蛋白。阻遏蛋白的功能类似于分子锁。当人们在细胞生长培养基中添加乳糖后,阻遏蛋白将在检测到乳糖的同时发生分子结构改变,然后“解锁”乳糖消化基因与乳糖转运基因(也就是允许基因被激活),从而使细胞能够代谢乳糖。当另外一种糖(例如葡萄糖)存在时,阻遏蛋白的分子结构将维持不变,因此无法激活乳糖消化基因。1966年,沃尔特·吉尔伯特与本诺·穆勒—希尔(Benno Muller-Hill)从细菌细胞中分离出阻遏蛋白,从而证实莫诺提出的操纵子假说毋庸置疑。同年,马克·普塔什尼(Mark Ptashne)与南希·霍普金斯(Nancy Hopkins)从病毒中分离出另一种阻遏蛋白。

[3] 与宇宙学家提到的海龟概念不同,这种遗传学观点并不荒谬。原则上来说,单细胞胚胎的确拥有构成完整生物体的全套遗传信息。而对于序贯基因电路在生物体发育中的作用,我们将在随后的章节里进行阐述。

[4] 除了聚合酶之外,DNA复制尚需许多蛋白质来参与双螺旋结构解螺旋,同时还要确保遗传信息得到精准复制。目前在细胞中已发现了多种DNA聚合酶,而它们在功能上则略有不同。

[5] 芭芭拉·麦克林托克(Barbara McClintock)是一位美国遗传学家,她发现遗传因子可以在基因组之间来回移动,而研究人员将其称为“跳跃基因”(jumping gene)。麦克林托克于1983年获得诺贝尔奖。

[6] 此外有几位科学家还发现基因组也可以编码用于修复损伤的基因,其中就包括美国遗传学家伊夫林·威特金(Evelyn Witkin)与史蒂夫·埃利奇(Steve Elledge)。威特金与埃利奇独立开展了各自的研究,他们完整地分离出可以检测DNA损伤的蛋白质级联,而这些蛋白质可以诱导细胞对损伤产生修复或者延迟反应(如果损伤具有毁灭性,那么它将终止细胞分裂)。这些基因突变会造成DNA损伤累积,它们将在日后引发更多的突变,并且最终导致肿瘤发生。在基因生理学中,第四个以“R”为首字母的单词应该非“修复”(repair)莫属,而它对于生物体的生存与突变来说均不可或缺。


第七章 “变幻莫测的难解之谜”第九章 基因与生命起源